论 文 ︵ 著 作 ︶ | [1] Q. Zhou, L. Qian, F. Qin, J. Meng, X. Zhang, P. Ma, H. Liu, X. Wang, L. Zhao, Reverse loading-rate sensitivity of tensile fracture energy of smooth and pre-cracked specimens of carbide-free bainitic steel, Scripta Materialia, 2022, 218, 114844. [2] Q. Zhou, L. Qian, J. Meng, F. Qin, L. Zhao, Monotonic tensile and cyclic deformation behaviors of carbide-Free bainitic steel subjected to austempering and tempering after air cooling, Steel Research International, 2022, 93(7), 2200039. [3] Q. Zhou, P. Guo, F. Qin, Stress response behavior, microstructure evolution and constitutive modeling of 22MnB5 boron steel under isothermal tensile load, Metals, 2022, 12(6), 930. [4] Q. Zhou, L. Qian, J. Meng, L. Zhao, The fatigue properties, microstructural evolution and crack behaviors of low-carbon carbide-free bainitic steel during low-cycle fatigue, Materials Science and Engineering A, 2021, 820, 141571. [5] X. Wang, H. Cui, Q. Zhou (通讯), X. Zhang, Y. Zhang, Microhardness and Corrosion Resistance of Electrodeposited Ni-SiC-BN Composite Coatings, Int. J. Electrochem. Sci., 2022, 17, 220677. [6] Z. Lv, Z.Y. Yang, J.Y. Zhang, X.T. Li, P. Ji, Q. Zhou (通讯), X.L. Zhang, Y.D. Shi, Numerical simulation and experimental research on cracking mechanism of twin-roll strip casting, High Temperature Materials and Processes, 2022, 41, 694-701. [7] 任鹏帅, 秦凤, 周骞(通讯), 赵雷杰, 崔护, 彭子奥, 武常生, 等温淬火对含铝无碳化物贝氏体钢组织和性能的影响, 金属热处理, 2024, 49(9), 103-109. [8] Q. Zhou, L. Qian, J. Meng, L.Zhao, F. Zhang, Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel, Materials and Design, 2015, 85, 487-496. [9] Q. Zhou, L. Qian, J. Tan, J. Meng, F. Zhang, Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels, Materials Science and Engineering A, 2013, 578, 370-376. [10] Q. Zhou, L. Qian, L. Zhao, Q. Zhu, J. Meng, F. Zhang, Loading-rate dependence of fracture absorption energy of low-carbon carbide-free bainitic steel, Journal of Alloys and Compounds, 2015, 650, 944-948. [11] Q. Zhou, L. Qian, J. Meng, L. Zhao, F. Zhang, Loading rate sensitivity of fracture absorption energy of bainitic-austenitic TRIP steel, Materials Science Forum, 2015, 833, 3-6. [12] L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, Y. Tian, Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si, Materials and Design, 2012, 39, 264-268. [13] L. Zhao, L. Qian, Q. Zhou, D. Li, T. Wang, Z. Jia, F. Zhang, J. Meng, The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel, Materials and Design, 2019, 183: 108-123. [14] L. Zhao, L. Qian, J. Meng, Q. Zhou, F. Zhang, Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scripta Materialia, 2016, 112: 96-100. |